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Abstract

We propose an off-line delayed-start LPT algorithm that sequences the first (longest) 5 jobs optimally and the remaining
jobs according to the LPT principle on two identical parallel machines. We show that this algorithm has a sharper tight
worst-case ratio bound than the traditional LPT algorithm for the sum of squares of machine completion times minimi-
zation problem.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider off-line scheduling on two identical parallel machines with the objective of minimizing the sum
of squares of the machine completion times. We assume that there are n jobs Jj with processing times pj,
j ¼ 1; . . . ; n to be scheduled non-preemptively on two identical parallel machines. The completion time of
job Jj is denoted as Cj, j ¼ 1; . . . ; n. The machine completion time of machine mi, i ¼ 1; 2, defined as the com-
pletion time of the last job scheduled on it, is denoted as Cmi , i ¼ 1; 2. We denote our problem as the
P2k

P2
i¼1ðCmiÞ

2 problem. For any heuristic algorithm A, let CA
max and CA

min denote the quantities obtained using
algorithm A, where Cmax ¼ maxi¼1;2fCmig, Cmin ¼ mini¼1;2fCmig, and let C�max and C�min denote the correspond-
ing optimal quantities. We define the (relative) worst-case ratio bound of algorithm A for the P2k

P2
i¼1ðCmiÞ

2

problem as
0377-2

doi:10

* Co
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qA
squares ¼ l:u:b:

½ðCA
maxÞ

2 þ ðCA
minÞ

2� � ½ðC�maxÞ
2 þ ðC�minÞ

2�
ðC�maxÞ

2 þ ðC�minÞ
2

( )
: ð1Þ
Graham (1969) proposed the longest processing time (LPT) algorithm for the PmkCmax problem (the
makespan minimization problem on m identical parallel machines). The LPT algorithm sorts all jobs in the
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non-increasing order of their processing times and assigns the next job in the list to the earliest available
machine with ties broken in favor of the lowest numbered machine. Chandra and Wong (1975) used the
LPT algorithm for the Pmk

Pm
i¼1ðCmiÞ

2 problem with qLPT
squares ¼ 1

24
; for m = 2 they obtained the sharper bound

of approximately 0.0285. Leung and Wei (1995) improved the results of Chandra and Wong (1975) when
m > 2.

The motivation for our paper is the observation that in a two identical parallel machines setting, the LPT
algorithm is optimal for problem instances with up to 4 jobs and its worst-case performance occurs in problem
instances with exactly 5 jobs. This observation implies that the worst-case performance of the LPT algorithm
can be improved by scheduling the first (longest) 5 jobs optimally and then implementing the LPT rule for
scheduling (heuristically) the remaining jobs.

In the next section, we present our delayed-start LPT algorithm A (with Oðn log nþ cÞ complexity, where c

is a constant), that sequences the first (longest) 5 jobs optimally and the remaining jobs according to the LPT
principle. We show that algorithm A has a sharper tight worst-case ratio bound than the traditional LPT algo-
rithm for the P2k

P2
i¼1ðCmiÞ

2 problem. More precisely, we show that qA
squares ¼ 1

49
which improves the bound of

0.0285 of Chandra and Wong (1975).
An alternative theoretical approach for obtaining approximate solutions for the Pmk

Pm
i¼1ðCmiÞ

2 problem is
to construct polynomial time approximation schemes (PTAS). Alon et al. (1997) constructed a PTAS for every
fixed p P 1 for the Pmk

Pm
i¼1ðCmiÞ

p problem which includes the Pmk
Pm

i¼1ðCmiÞ
2 problem as a special case when

p = 2. However, PTAS are generally hard to implement from a practical standpoint.
We close this section by surveying additional related literature. He et al. (2000) proposed linear algorithms

with sharper worst-case bounds than the LPT algorithm for the P2kCmax problem. However, their algorithms
are hard to extend to the P2k

P2
i¼1ðCmiÞ

2 problem. Several authors considered semi-online algorithms when it
can be assumed that the jobs arrive in the LPT order but their actual processing times are unknown. We men-
tion the work of Tan et al. (2005) for the semi-online version of the P2k

P2
i¼1ðCmiÞ

2 problem.
2. Worst-case bound for an off-line delayed-start LPT algorithm A

The proposed algorithm A can be summarized as follows:

Algorithm A

Step 1: Sort all jobs Jj, j ¼ 1; . . . ; n, in the non-increasing order of their pj values. Let S denote the resulting
list (sequence) (without loss of generality, we assume that S ¼ f1; 2; . . . ; ng).

Step 2: If n 6 4, then schedule all jobs according to the LPT rule.

If n P 5, then schedule the first (longest) 5 jobs in S optimally followed by the remaining jobs scheduled
according to the LPT rule.

The running time of algorithm A is Oðn log nþ cÞ, where c ¼ Oð5Þ denotes the constant running time
needed to sequence the first 5 jobs optimally. Actually, the comparison of the six schedules [{1},{2,3,4,5}],
[{1, 2},{3,4,5}], [{1, 3},{2,4,5}], [{1, 4},{2,3,5}], [{1, 5},{2, 3,4}] and [{2,3}, {1,4,5}] respectively suffices to
determine the optimal solution when there are only 5 jobs; the numbers in the first (second) set of brackets
{} denote the job allocation to m1 (m2) for each schedule.

Denote by CA
maxðkÞ and CA

minðkÞ the maximum and the minimum machine completion time, respectively,
after job Jk, k ¼ 1; . . . ; n, has been scheduled by algorithm A. Also, let C�maxðkÞ and C�minðkÞ denote the corre-
sponding optimal quantities. The quantity qA

squaresðkÞ is defined analogously to (1) for a problem containing
jobs Jj, j ¼ 1; . . . ; k. Clearly, CA

max ¼ CA
maxðnÞ, C�max ¼ C�maxðnÞ, qA

squares ¼ qA
squaresðnÞ, and so on for the other sim-

ilar quantities. Denote the sum of processing times of the first k jobs in the LPT order as P ðkÞ ¼
Pk

j¼1pj. Then,
C�maxðkÞ þ C�minðkÞ ¼ CA

maxðkÞ þ CA
minðkÞ ¼ P ðkÞ ¼

Pk
j¼1pj, which implies that
CA
maxðkÞ � C�maxðkÞ ¼ ½P ðkÞ � CA

minðkÞ� � ½PðkÞ � C�minðkÞ� ¼ C�minðkÞ � CA
minðkÞ: ð2Þ
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Furthermore,
X2

i¼1

½CA
mi
ðkÞ�2 ¼ ½CA

maxðkÞ�
2 þ ½CA

minðkÞ�
2 ¼ 1

2
½CA

maxðkÞ � CA
minðkÞ�

2 þ 1

2
½CA

maxðkÞ þ CA
minðkÞ�

2

¼ 1

2
½CA

maxðkÞ � CA
minðkÞ�

2 þ 1

2
½P ðkÞ�2 ¼ 1

2
½2CA

maxðkÞ � P ðkÞ�2 þ 1

2
½PðkÞ�2: ð3Þ
Expression (3) is also valid when C�maxðkÞ, C�minðkÞ are substituted for CA
maxðkÞ, CA

minðkÞ, respectively.
The main result of this paper is stated next.

Theorem 1. The worst-case ratio bound for algorithm A satisfies
qA
squares 6

1

49
ð4Þ
and this bound is tight.

Proof. Each time algorithm A appends a new job Jk (k ¼ 6; . . . ; n) to the incumbent partial schedule (which is
optimal when it contains up to 5 jobs) there are two possibilities: job Jk either becomes the makespan deter-
mining job or not. h

Case 1. Job Jk becomes the makespan determining job, that is CA
maxðkÞ > CA

maxðk � 1Þ for some k, k ¼ 6; . . . ; n.

Let P iðkÞ, i ¼ 1; 2, denote the sum of processing times of those jobs among the first k jobs in the LPT order
that are scheduled on machine mi by algorithm A as shown in the next figure.

Define
DAðkÞ ¼ CA
maxðkÞ � CA

minðkÞ; ð5Þ
D�ðkÞ ¼ C�maxðkÞ � C�minðkÞ: ð6Þ
Clearly, PðkÞ ¼ P 1ðk � 1Þ þ P 2ðk � 1Þ þ pk. Observe that
DAðkÞ ¼ P 2ðk � 1Þ þ pk � P 1ðk � 1Þ 6 pk ð7Þ
as shown in the above figure, in which, without loss of generality, we have assumed that P 2ðk � 1Þ 6 P 1ðk � 1Þ.
Denote by niðkÞ, i ¼ 1; 2, the number of jobs among the first k jobs in the LPT order scheduled on machine mi

by algorithm A.
By combining

P2
i¼1½C�mi

ðkÞ�2 P 1
2
½P ðkÞ�2 with (3), (5) and (6) we obtain
qA
squaresðkÞ ¼ l:u:b:

P2
i¼1½CA

mi
ðkÞ�2 �

P2
i¼1½C�mi

ðkÞ�2P2
i¼1½C�mi

ðkÞ�2

( )
¼ l:u:b:

1
2
½DAðkÞ�2 � 1

2
½D�ðkÞ�2P2

i¼1½C�mi
ðkÞ�2

( )

6 l:u:b:
DAðkÞ
PðkÞ

� �2
( )

: ð8Þ
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The following subcases must be considered.

Subcase 1-1. Let k P 7. Then, since p1 P � � �P pk, P ðkÞ ¼
Pk

j¼1pj P kpk P 7pk.
Subcase 1-2. Let k = 6 and n2ðk � 1ÞP 3. Then, P 1ðk � 1ÞP P 2ðk � 1ÞP 3pk, and thus P ðkÞ ¼ P 1ðk � 1Þþ
P 2ðk � 1Þ þ pk P 7pk.

Subcase 1-3. Let k = 6 and n2ðk � 1Þ 6 2. Then, n1ðk � 1ÞP 3, that is P 1ðk � 1ÞP 3pk, and thus
P ðkÞ ¼ P 1ðk � 1Þ þ P 2ðk � 1Þ þ pk ¼ 2P 1ðk � 1Þ þ DAðkÞP 6pk þ DAðkÞP 7DAðkÞ.

In Subcases 1-1 and 1-2 P ðkÞP 7pk, which combined with (7) yields
DAðkÞ
P ðkÞ 6

pk

7pk

¼ 1

7
: ð9Þ
In Subcase 1-3 P ðkÞP 7DAðkÞ, therefore
DAðkÞ
P ðkÞ 6

DAðkÞ
7DAðkÞ

¼ 1

7
: ð10Þ
The combination of inequalities (8)–(10) proves inequality (4) for Case 1.

Case 2. Job Jk does not become the makespan determining job, that is CA
maxðkÞ ¼ CA

maxðk � 1Þ for some k,
k ¼ 6; . . . ; n.

In this case we first show that the following inequality holds for k ¼ 6; . . . ; n
qA
squaresðkÞ 6 qA

squaresðk � 1Þ: ð11Þ
By utilizing expression (8), we can write
qA
squaresðk � 1Þ ¼ l:u:b:

½CA
maxðk � 1Þ�2 þ ½CA

minðk � 1Þ�2

½C�maxðk � 1Þ�2 þ ½C�minðk � 1Þ�2
� 1

( )
ð12Þ
and
qA
squaresðkÞ ¼ l:u:b:

½CA
maxðkÞ�

2 þ ½CA
minðkÞ�

2

½C�maxðkÞ�
2 þ ½C�minðkÞ�

2
� 1

( )
: ð13Þ
Our assumption of CA
maxðkÞ ¼ CA

maxðk � 1Þ implies that CA
minðkÞ ¼ CA

minðk � 1Þ þ pk and thus expression (13) can
be written as
qA
squaresðkÞ ¼ l:u:b:

½CA
maxðk � 1Þ�2 þ ½CA

minðk � 1Þ þ pk�
2

½C�maxðkÞ�
2 þ ½C�minðkÞ�

2
� 1

( )
: ð14Þ
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We show in the sequel that
½C�maxðkÞ�
2 þ ½C�minðkÞ�

2 ¼ ½C�maxðk � 1Þ þ ��2 þ ½C�minðk � 1Þ þ pk � ��
2
; ð15Þ
where � P 0 depends on k. Define the quantities
a ¼ CA
maxðk � 1Þ; b ¼ CA

minðk � 1Þ; c ¼ C�maxðk � 1Þ; d ¼ C�minðk � 1Þ: ð16Þ
By combining expressions (12), (14), (15) and (16), inequality (11) can be written as
l:u:b:
ðaÞ2 þ ðbþ pkÞ

2

ðcþ �Þ2 þ ðdþ pk � �Þ
2
� 1

( )
6 l:u:b:

ðaÞ2 þ ðbÞ2

ðcÞ2 þ ðdÞ2
� 1

( )
: ð17Þ
Define the quantities
a ¼ ðaÞ2 þ ðbÞ2; b ¼ ðcÞ2 þ ðdÞ2; c ¼ 2pkbþ p2
k ; d ¼ 2pkdþ p2

k þ 2�ðc� d� pk þ �Þ: ð18Þ
Using the expression in (18), inequality (17) can be written as
l:u:b:
aþ c
bþ d

� 1

� �
6 l:u:b:

a
b
� 1

n o
: ð19Þ
Since a P b > 0, inequality (19) (which in turn leads to (11)) will be true if d P c > 0. In order to prove
d P c > 0, we consider two subcases:

Subcase 2-1. C�maxðk � 1ÞP C�minðk � 1Þ þ pk.
If we add job Jk to the optimal schedule for the first k � 1 jobs by placing it on the machine with the
minimum machine completion time, then the resulting schedule will still be feasible because
C�minðk � 1Þ þ pk 6 C�maxðk � 1Þ. Thus, C�maxðkÞ 6 C�maxðk � 1Þ, and, because of C�maxðkÞP C�maxðk � 1Þ, we
obtain
C�maxðkÞ ¼ C�maxðk � 1Þ: ð20Þ
Moreover, equality (20) implies that
C�minðkÞ ¼ C�minðk � 1Þ þ pk: ð21Þ
The combination of (20) and (21) yields (15) for Subcase 2-1 with � ¼ 0. Therefore, by (18), c ¼ 2pkbþ p2
k and

d ¼ 2pkdþ p2
k . This implies that d P c > 0 for Subcase 2-1.
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Subcase 2-2. C�maxðk � 1Þ < C�minðk � 1Þ þ pk.
In this subcase C�maxðk � 1Þ 6 C�minðkÞ 6 C�maxðkÞ 6 C�minðk � 1Þ þ pk. We define the quantity � as
� ¼ C�minðkÞ � C�maxðk � 1ÞP 0: ð22Þ
By combining (22) with C�maxðkÞ þ C�minðkÞ ¼ C�maxðk � 1Þ þ C�minðk � 1Þ þ pk, we obtain
C�maxðkÞ ¼ C�minðk � 1Þ þ pk � �: ð23Þ
The combination of (22) and (23) yields (15) for Subcase 2-2 with � defined by (22). Since C�maxðkÞP C�minðkÞ
and C�maxðk � 1ÞP C�minðk � 1Þ, equalities (22) and (23) imply that
0 6 2� 6 pk; ð24Þ

for Subcase 2-2. Since CA

maxðkÞ ¼ CA
maxðk � 1Þ, it is clear from the figure depicting the general Case 2 that
2CA
minðk � 1Þ þ pk 6 P ðk � 1Þ ¼ C�maxðk � 1Þ þ C�minðk � 1Þ;
which implies that
0 6 pk � ðc� dÞ 6 2d� 2b: ð25Þ

The quantities defined in (18) imply that the condition d P c > 0 is equivalent to
d � c ¼ 2pkdþ p2
k þ 2�ðc� d� pk þ �Þ � 2pkb� p2

k ¼ pkð2d� 2bÞ � 2�½pk � ðc� dÞ� þ 2ð�Þ2 P 0: ð26Þ
The combination of inequalities (24) and (25) yields inequality (26), that is d P c > 0 for Subcase 2-2 as well.
In order to complete the proof for Case 2 we argue as follows. Since algorithm A schedules the first (lon-

gest) 5 jobs optimally, we only need to consider worst-case ratio bounds for problems with 6 or more jobs.
Since the worst-case ratio bound in (11) is a nonincreasing function of k, inequality (4) (obtained for k P 6
for Case 1) is valid for Case 2 as well.

The following problem instance with n = 6 jobs and with job processing times pj in the LPT list given as
{3,3,2,2,2,2} demonstrates the tightness of our bound. The algorithm A schedule and the optimal schedule
are depicted below.

It is easy to see that C�max ¼ C�min ¼ 7, CA
max ¼ 8, CA

min ¼ 6; therefore, qA
squares ¼ 1

49
.

3. Concluding remarks

Since the bound in Theorem 1 is a decreasing function of k, algorithm A can be made more accurate (with a
sharper worst-case bound) at the expense of the additional computational effort needed to sequence a larger
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job set optimally. However, this approach cannot be extended indefinitely since the required computational
effort for sequencing jobs optimally quickly becomes prohibitive due to the well-known NP-hardness of the
P2k

P2
i¼1ðCmiÞ

2 problem.
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